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Some exact solutions to the translation-invariant N-body 
problem 
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Department of Mathematics, Sir George Williams Campus, Concordia University, 
Montreal, Quebec H3G lMB, Canada 

Received 7 December 1977 

Abstract. It is shown that Schrodinger’s equation for a translation-invariant system 
consisting of N particles with arbitrary masses interacting via Hooke’s law pair potentials 
with the same coupling constant can be solved exactly; explicit solutions are found for the 
case N = 3. Exact solutions are also found explicitly for the translation-invariant problem 
in which a particle with mass mo interacts with N identical particles of mass ml via a 
Hooke’s law pair potential with coupling constant k;, and the identical particles interact 
with each other via Hooke’s law pair potentials with coupling constant k:. The latter 
solution provides a basis problem for an energy lower-bound method for translation- 
invariant atom-like systems. 

1. Introduction 

We consider translation-invariant N-body problems in which the particles interact by 
Hooke’s law pair potentials and obey non-relativistic quantum mechanics. For 
example, the Hamiltonian H for such a system in which the coupling constant k2 is the 
same for every pair is given by: 

N where m = mi is the total mass. In the symmetrical case of equal masses the exact 
eigenvalues and eigenfunctions of H have been determined by Post (1953). A more 
general symmetrical problem including also inverse-square potentials has been solved 
by Calogero and Marchioro (1969). 

The problem is essentially algebraic. One looks for a set of translation-invariant 
relative coordinates in terms of which both the kinetic and potential energy terms are 
diagonal quadratic forms. In a fixed frame of reference the general problem with 
arbitrary masses and coupling constants appears to be soluble in principle (Symon 
1971, p 467). However, the requirement that the centre-of-mass motion separate is a 
constraint of this diagonalisation process and the new algebraic problem is 
consequently more difficult. 

In this paper we find exact solutions for two types of system. The first type has the 
Hamiltonian H in equation (1): we show in § 2 that this system can always be solved 
exactly and we find in P 3 explicit solutions for the case N = 3. In 0 4 we consider a 
particle with mass mo interacting with N particles each of mass ml via a harmonic 
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1228 R L Hall 

potential with coupling constant k: ; the N identical particles interact with each other 
via a harmonic potential with constant k:.  The exact solution we find to this 'harmonic 
atom' system generalises the result of Moshinsky and Calles (1970) who solved the 
problem for mo = 00, that is for a system in a fixed frame of reference. 

2. The N-body problem 

We wish to demonstrate that a transformation of coordinates exists which allows the 
separation of the centre-of-mass motion and simultaneously diagonalises the kinetic 
and potential energy terms in the Hamiltonian H (equation (1)). We start with a 
transformation p = Br, where p and r are column vectors of the new and old coor- 
dinates respectively, and we choose the real N x N matrix B so that p1 = miri)/m 
is the centre-of-mass coordinate, and rows 2 to N of B are orthonormal row vectors 
satisfying: 

N 

for i, j > 1. ( 2 )  

N 1 BiSBjs = Sij 
s = l  

N 

s = l  
1 Bis=O 

With this choice of coordinates the potential energy term becomes: 
N N 

V = 1 k2(ri -rj)2 = Nk2 1 p' 
i < j = 2  i = 2  

and the coordinates ( p 2 ,  p3, . . . , p N )  are translation-invariant relative coordinates. 
The new momenta mi = -iAV,, are related to the old momenta by p = BTm where 

n and p are column vectors of these momenta respectively. If by M we denote the 
diagonal N x N matrix [mi ] ,  then the total kinetic energy K is given by: 

2K =pTM-'p = nTBM-'BTr. (4 ) 
In view of the definition of p1 and of equations (2) we have 

(5  1 2 K = n l / 2 m  + miCmR, 

where nR is the column vector of the (N  - 1) relative momenta and C is the (N - 1) x 
( N  - 1) matrix with elements (i, j > 1): 

N 

s = l  
Cij = k 1 BiSBis/ms. 

Now if T is an orthogonal ( N  - 1 ) X  (N  - 1) matrix we may define new relative 
coordinates by 

~k TPR 
and the translation-invariant Hamiltonian H becomes (from equations (3) and (5 ) ) :  

N 

i = 2  
H = ( v ~ ) ~ T C T ~ ~ ~  +Nk2  1 (pi)', 

where mk = T ~ R  are the new relative momenta. 
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The matrix C (equation (6) )  is a real symmetric positive definite matrix and 
therefore T may be chosen to diagonalise C whose eigenvalues we suppose to be { C Y : } ,  

i = 2 , 3 ,  , . . , N .  The Hamiltonian H now separates completely giving: 

whose eigenfunctions are products of 3(N - 1) Hermite functions. The eigenvalues of 
H are given by 

N 

i = 2  
E = [ 2 ( ~ i + y i + z i ) + 3 ] N " ~ h a i k ,  ( 9 )  

where xi ,  y i ,  and zi are any positive or zero integers. 
Our method of proof in the above argument suggests that we start, for example, 

with normalised Jacobi relative coordinates and then find the matrix T which 
diagonalises C. However, in our explicit discussion of the case N = 3 ,  in the next 
section, we find it more convenient to construct directly the final set of relative 
coordinates whose existence we have established above. 

3. The three-body problem 

For N = 3 ,  we suppose that the final set of coordinates p = Br are given by 

where a,  b, c, and d are real, and m = ( m l  + m2 + m3). If we denote rows 2 and 3 of B 
by the vectors uT and u T  respectively, then the relative kinetic and potential energy 
operators become diagonal if the following four conditions hold: 

T T u u = u  u = l  

U'U = o  
uTM-'u = 0. 

The eigenvalues CY' and p2  of C (see 0 2 )  then become 

3.1. The case m2 = m3 

A solution of equations ( 1  1 )  in this case can be found if we set a = 0: we get the Jacobi 
relative coordinates 

T T p z = u  r and p 3 = u  r, 

U = =  ( 0 , 1 / J 2 ,  - 1 / J 2 )  and uT= ( 2 / J 6 ,  - 1 / J 6 ,  - 1 / 4 6 ) .  (13)  
where 

The parameters CY and p become (from equation (12)): 

CY = (2m2)-l" /3 = ( 1 / 3 m l  + l /6m2)1'2.  



1230 R L Hall 

The eigenvalues of H are given by equation (9) with a2 = a and a3 = p.  The ground 
state $o and the ground-state energy Eo are given by: 

Since the exchange of r2 with r3 sends p2 to -p2 and leaves p 3  invariant, states 
which are spatially symmetric or antisymmetric in particles 2 and 3 are respectively 
even and odd functions of p2. The system in which particle 1 is fixed at the origin is 
obtained by the limit rl + 0 and l / m l  + 0; the energies are only affected in this limit by 
the value of p which becomes p = (6m2)-1/2. 

3.2. The case ml 2 m2 > m3 

We have found the following solution to equations ( 1 1 )  in this case: 

mlm3+mlm2-2mzm3 
m1m2- mim3 

W =  

a = [ I  - w(3  + w 2 ) - 1 / 2 ~ 1 / 2 / J 3  

c = [ 1 + w (3 + w2)-1/2]1/2/d3 

b = (&c - a ) / 2  

d = - (c + &a)/2. 

If ml = m2, w = 1 and a = 1/J6;  this agrees with our result in 9 3.1 (where 
m2 = m3) provided we exchange rl with r3. If m1 > m2, then w > 1 and a < 1/J6 .  The 
formulae for a’ and p 2  (equation (12 ) )  become: 

a2  = a2/2m1+[(1 - a 2 ) - a ( 2 - 3 a z ) 1 / 2 ] / 4 m 2 + [ ( 1  -a2)+a(2- 3az)1/z]/4m3 

p = (2  - 3a 2) /6m + [ 1 + 3a + 3a (2  - 3 a 2)1/2]/ 12 m2 
(17) 

+ [ I  + 3a2-3a(2 - 3a2)1/2]/12m3. 

H =  ( a 2 m :  +3k2p:)+(p2m: +3k2p:) 

The Hamiltonian in separated form (equation (8)) now reads: 

( 1  8) 
and for example, the ground state t,bo(p2, p3)  and the ground-state energy Eo are given 
by equations ( 1 5 )  with the values of a and p taken from equations (17). 

4. The harmonic atom 

The Hamiltonian H for the system of (N + 1 )  particles (labelled 0, 1 , 2 ,  . . . , N )  is as 
follows: 

where the total mass m = mo+Nml. 
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We define new coordinates p = Br for this problem by the following matrix: 

r m d m  mllm mllm . . . m l / m -  

where a = 

I -Na a a * . .  
o 1 / J 2  - 1 / J 2  o . . .  
0 l / &  l / &  - 2 / &  0 . . 

L o  
etc 

N(N + 1)]-1'2 and (p2, p3, . . . , p ~ }  are the norm2 isec, Jacobi re'dtive 
coordinates for the N identical particles. In terms of these coordinates we find that 
the total kinetic energy operator K is given by: 

where 

m'= (N+l)( l /ml+N/mo)- ' .  

Meanwhile, in view of the following identities: 
N N 

O = i < j = l  i=l  
(ri-rj) '=(N+1) 1 p? 

and 
N N 

1 (ri -rj)' = N 1 p', 
1=i<j=2 i=2 

we are able to separate the Hamiltonian H giving: 
2 N 2  

H = (q + (N + l )k$  ;) + 1 ( rri + (Nk? + k ; ) p f ) .  
2m i = 2  2ml 

The eigenfunctions of H are products of 3N Hermite functions in the relative 
coordinates p1 to pN, and the eigenvalues are the corresponding sums of single- 
particle energies. Since p1 is symmetric in rl to r ~ ,  the burden of spatial permutation 
symmetry is carried by the dependence of the eigenstate on the coordinates p2 to p N .  
In the case of scalar particles in one dimension we get the following results for the 
ground-state energies Eo: 

bosons 

fermions 

where 

m2 = [ l / m l +  N/mo]-'.  
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Equation (24) agrees with equation (15) of § 3 in which N = 3 and k l  = ko. If ko = 0, 
the results agree with Post (1953) for N identical particles. Similarly if ko = kl and 
m o = m l ,  the boson formula (equation (24)) agrees with Post (1953) for ( N + l )  
identical particles; the fermion formula does not, of course, agree immediately with 
Post’s result (for (N  + 1) identical fermions) because in deriving equation (25) we have 
antisymmetrised in only N particles. If we set l /mo = 0, i.e. mz = ml,  then the boson 
formula agrees with Moshinsky and Calles (1970) who considered N identical bosons 
interacting with each other and with a fixed centre by Hooke’s law potentials. 

From the diagonal form of H (equation (23)) we see that the coupling constant k :  
between the identical particles may be chosen to be negative, as it is in a Hamiltonian 
for real atoms. For a bound system, in this case, it would be necessary that Nlk:l S k i .  

5. Conclusion 

We have found some exact solutions to the translation-invariant many-body problem 
in which the masses are not all equal, and the particles interact by Hooke’s law pair 
potentials. The explicit results for the three-body problem (§ 3) provide solutions 
suitable for quark models similar to those of Moshinsky (1969, p 60) and Horgan 
(1976) but allowing for different particle masses. If two masses are equal, the solution 
of 0 4 would apply and two distinct coupling constants would then be admitted. By a 
similar analysis we can extend these results up to the case of N identical particles with 
N distinct coupling constants. 

The harmonic atom solution of 0 4 may be useful for estimating exactly, in a 
special case, the mass-change effects in the energy lower-bound method of Carr and 
Post (1971, 1977). This exact solution also provides a basis problem for the design of 
new energy lower-bound method for translation-invariant atom -like systems, just as 
Post’s (1953) exact solution of the ‘harmonic nucleus’ system provides a basis problem 
for the lower-bound method I (Post 1956, Hall and Post 1967). By ‘basis problem’ we 
mean a specific problem for which the general energy lower-bound method provides 
the exact energy. 

We have proved (Hall 1972a, b) that method I yields the exact energy for (and 
only for) the boson oscillator system. Thus no systematic improvement in the method 
seems possible. In this restricted sense we may say that method I is optimal. Method 
I1 (Hall, 1967) for fermions, on the other hand, is not known to be optimal, although 
for N > 7 it gives the highest lower bound to-date, when applied to the popular test 
system consisting of scalar fermions in one dimension interacting by harmonic poten- 
tials (Hall 1972c, Carr and Post 1977). 

The energy lower-bound methods which are presently available for atom-like 
systems (Coleman 1963, Calogero and Marchioro 1969) apply only to problems in 
which there is a central potential which is fixed. Also the question of the optimality 
(with respect to energy) of these methods, in the above sense, has not been discussed. 

References 

Calogero F and Marchioro C 1969 J. Math. Phys. 10 562-9 
Carr R J M and Post H R 1971 J. Phys. A: Gen. Phys. 4 665-78 
- 1977 J. Phys. A: Math. Gen. 10 L59-61 



The N-body problem 1233 

Coleman A J 1963 Rev. Mod. Phys. 35 668-89 
Hall R L 1967 Proc. Phys. Soc 91 16-22 
- 1972a Can. J. Phys. 50 305-11 
- 1972b Aequat. Math. 8 281-6 
- 1972c J. Phys. A :  Gen. Phys. 5 608-11 
Hall R L and Post H R 1967 Proc. Phys. Soc. 90 381-96 
Horgan R R 1976 1. Phys. G :  Nucl. Phys. 2 625-39 
Moshinsky M 1969 The Harmonic Oscillator in Modern Physics: From Atoms to Quarks (New York: 

Moshinsky M and Calles A 1970 Am. J. Phys. 38 456-67 

- 1956 Proc. Phys. Soc A 69 936-8 
Symon K R 1971 Mechanics (Reading, Mass.: Addison-Wesley) 

Gordon and Breach) 

Post H R 1953 Proc. Phys. SOC A 66 649-52 


